116 research outputs found

    Numerical Simulation of a Turbulent Flow in a Channel with Surface Mounted Cubes

    Get PDF
    In this paper we report on a fourth-order, spectro-consistent simulation of a complex turbulent flow. A spatial discretization of a convection-diffusion equation is termed spectro-consistent if the spectral properties of the convective and diffusive operators are preserved, i.e. convection ↔ skew-symmetric; diffusion ↔ symmetric positive definite. We consider a fully developed flow in a channel, where a matrix of cubes is placed at a wall of the channel. The Reynolds number (based on the channel width and the mean bulk velocity) is equal to Re = 13,000. The three-dimensional flow around the surface mounted cubes has served at a test case at the 6th ERCOFTAC/IAHR/COST workshop on refined flow modeling (Delft, June 1997). Here, mean velocity profiles as well as Reynolds stresses at various locations in the channel have been computed without using any turbulence models. The results agree well with the available experimental data.

    Spectro-consistent discretization of Navier-Stokes: a challenge to RANS and LES

    Get PDF
    In this paper, we discuss the results of a fourth-order, spectro-consistent discretization of the incompressible Navier-Stokes equations. In such an approach the discretization of a (skew-)symmetric operator is given by a (skew-)symmetric matrix. Numerical experiments with spectro-consistent discretizations and traditional methods are presented for a one-dimensional convection-diffusion equation. LES and RANS are challenged by giving a number of examples for which a fourth-order, spectro-consistent discretization of the Navier-Stokes equations without any turbulence model yields better (or at least equally good) results as large-eddy simulations or RANS computations, whereas the grids are comparable. The examples are taken from a number of recent workshops on complex turbulent flows.

    Preserving Symmetry in Convection-Diffusion Schemes

    Get PDF

    Direct numerical simulation of turbulence on a Connection Machine CM-5

    Get PDF
    In this paper we report on our first experiences with direct numerical simulation of turbulent flow on a 16-node Connection Machine CM-5. The CM-5 has been programmed at a global level using data parallel Fortran. A two-dimensional direct simulation, where the pressure is solved using a Conjugate Gradient method without preconditioning, runs at 23% of the peak. Due to higher communication costs, 3D simulations run at 13% of the peak. A diagonalwise re-ordered Incomplete Choleski Conjugate Gradient method cannot compete with a standard CG-method on the CM-5.
    corecore